Energies (Aug 2023)

The Condensation Characteristics of Propane in Binary and Ternary Mixtures on a Vertical Plate

  • Lili Zhang,
  • Yongzhang Cui,
  • Wenlong Mao,
  • Xiangzhuo Sheng,
  • Guanmin Zhang

DOI
https://doi.org/10.3390/en16165873
Journal volume & issue
Vol. 16, no. 16
p. 5873

Abstract

Read online

Natural gas is one of the most common forms of energy in our daily life, and it is composed of multicomponent hydrocarbon gas mixtures (mainly of methane, ethane and propane). It is of great significant to reveal the condensation mechanism of multicomponent mixtures for the development and utilization of natural gas. A numerical model was adopted to analyze the heat and mass transfer characteristics of propane condensation in binary and ternary gas mixtures on a vertical cold plate. Multicomponent diffusion equations and the volume of fluid method (VOF) are used to describe the in-phase and inter-phase transportation. The conditions of different wall sub-cooled temperatures (temperature difference between the wall and saturated gas mixture) and the inlet molar fraction of methane/ethane are discussed. The numerical results show that ethane gas is more likely to accumulate near the wall compared with the lighter methane gas. The thermal resistance in the gas boundary layer is one hundred times higher than that of the liquid film, revealing the importance of diffusion resistance. The heat transfer coefficients increased about 11% (at ΔT = 10 K) and 7% (at ΔT = 40 K), as the molar fraction of ethane increased from 0 to 40%. Meanwhile, the condensation heat transfer coefficient decreased by 53~56% as the wall sub-cooled temperature increased from 10 K to 40 K.

Keywords