Buildings (Feb 2024)

The Performance and Reaction Mechanism of Untreated Steel Slag Used as a Microexpanding Agent in Fly Ash-Based Geopolymers

  • Jun Zang,
  • Chunlei Yao,
  • Bing Ma,
  • Zhiyuan Shao,
  • Houhu Zhang,
  • Jiaqing Wang,
  • Binbin Qian,
  • Hao Zhou,
  • Yueyang Hu

DOI
https://doi.org/10.3390/buildings14020463
Journal volume & issue
Vol. 14, no. 2
p. 463

Abstract

Read online

Steel slag is an industrial by-product of the steelmaking process, which is under-utilized and of low value due to its characteristics. Alkali-activated technology offers the possibility of high utilization and increased value of steel slag. A geopolymer composition was composed of steel slag, fly ash, and calcium hydroxide. Four experimental groups utilizing steel slag to substitute fly ash are established based on varying replacement levels: 35%, 40%, 45%, and 50% by mass. The final samples were characterized by compressive strength tests, and Fourier-transform infrared spectroscopy measurements, thermogravimetric measurements, scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction, and mercury intrusion porosimetry were used to investigate the chemical composition and microstructure of the final products. Higher steel slag/fly ash ratios lead to a lower bulk density and lower compressive strength. The compressive strength ranges from 3.7 MPa to 5.6 MPa, and the bulk density ranges from 0.85 g/cm3 to 1.13 g/cm3. Microstructural and energy-dispersive X-ray spectroscopy analyses show that the final geopolymer products were a type of composite consisting of both calcium aluminate silicate hydrate and sodium aluminate silicate hydrate, with the unreacted crystalline phases acting as fillers.

Keywords