PLoS ONE (Jan 2020)

Baroreflex gain and time of pressure decay at different body temperatures in the tegu lizard, Salvator merianae.

  • Renato Filogonio,
  • Karina F Orsolini,
  • Gustavo M Oda,
  • Hans Malte,
  • Cléo A C Leite

DOI
https://doi.org/10.1371/journal.pone.0242346
Journal volume & issue
Vol. 15, no. 11
p. e0242346

Abstract

Read online

Ectotherms may experience large body temperature (Tb) variations. Higher Tb have been reported to increase baroreflex sensitivity in ectotherm tetrapods. At lower Tb, pulse interval (PI) increases and diastolic pressure decays for longer, possibly resulting in lower end-diastolic pressures and mean arterial pressures (Pm). Additionally, compensatory baroreflex-related heart rate modulation (i.e. the cardiac branch of the baroreflex response) is delayed due to increased PI. Thus, low Tb is potentially detrimental, leading to cardiovascular malfunctioning. This raises the question on how Pm is regulated in such an adverse condition. We investigated the baroreflex compensations that enables tegu lizards, Salvator merianae, to maintain blood pressure homeostasis in a wide Tb range. Lizards had their femoral artery cannulated and pressure signals recorded at 15°C, 25°C and 35°C. We used the sequence method to analyse the heart rate baroreflex-related corrections to spontaneous pressure fluctuations at each temperature. Vascular adjustments (i.e. the peripheral branch) were assessed by calculating the time constant for arterial pressure decay (τ)-resultant from the action of both vascular resistance and compliance-by fitting the diastolic pressure descent to the two-element Windkessel equation. We observed that at lower Tb, lizards increased baroreflex gain at the operating point (Gop) and τ, indicating that the diastolic pressure decays at a slower rate. Gop normalized to Pm and PI, as well as the ratio τ/PI, did not change, indicating that both baroreflex gain and rate of pressure decay are adjusted according to PI lengthening. Consequently, pressure parameters and the oscillatory power fraction (an index of wasted cardiac energy) were unaltered by Tb, indicating that both Gop and τ modulation are crucial for cardiovascular homeostasis.