Metals (Dec 2020)

Constitutive Model and Microstructure Evolution Finite Element Simulation of Multidirectional Forging for GH4169 Superalloy

  • Yongbo Jin,
  • Chenyang Xi,
  • Peng Xue,
  • Chunxiang Zhang,
  • Sirui Wang,
  • Junting Luo

DOI
https://doi.org/10.3390/met10121695
Journal volume & issue
Vol. 10, no. 12
p. 1695

Abstract

Read online

This study investigates three processes of multidirectional forging (MDF), namely, closed MDF (CMDF), single-open MDF, and double-open MDF, by using a constitutive equation and a dynamic recrystallization model of hot deformation of the GH4169 superalloy. The microstructure evolution of the three processes is simulated and compared. Among the three processes, the double-open MDF obtains the highest recrystallization degree, followed by the CMDF and the single-open MDF under the same reduction. The recrystallization degree of CMDF reaches 99.5% at 1000 °C and 9 passes, and the average recrystallized grain size is small, which is approximately 8.1 μm. The double-open MDF can obtain a fine grain size of forgings at 9 passes and 1000 °C, and it is easy to obtain forgings with the single-open MDF with uniform performance. The temperature is 850 °C–1000 °C, the compression rate is 0.15–0.2, and the pass is 5–9, which are the suitable parameter selection ranges for the CMDF. The temperature is 950 °C–1000 °C, the compression rate is 0.1–0.2, and the pass is 7–9, which are the suitable parameter selection ranges for single-open MDF. The temperature is 850 °C–1000 °C, the compression rate is 0.1–0.2, and the pass is 6–9, which are the suitable parameter selection ranges for the double-open MDF.

Keywords