PLoS ONE (Jan 2013)

Genetic diversity and geographic population structure of bovine Neospora caninum determined by microsatellite genotyping analysis.

  • Javier Regidor-Cerrillo,
  • Francisco Díez-Fuertes,
  • Alicia García-Culebras,
  • Dadín P Moore,
  • Marta González-Warleta,
  • Carmen Cuevas,
  • Gereon Schares,
  • Frank Katzer,
  • Susana Pedraza-Díaz,
  • Mercedes Mezo,
  • Luis M Ortega-Mora

DOI
https://doi.org/10.1371/journal.pone.0072678
Journal volume & issue
Vol. 8, no. 8
p. e72678

Abstract

Read online

The cyst-forming protozoan parasite Neosporacaninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N. caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N. caninum, which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N. caninum-derived reference isolates from around the world and 96 N. caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N. caninum. Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N. caninum samples. Geographic sub-structuring was present in the country populations according to pairwise F(ST). Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal propagation for Spanish N. caninum MLGs in cattle.