Tomography (Jan 2023)
Multilesion Segmentations in Patients with Intracerebral Hemorrhage: Reliability of ICH, IVH and PHE Masks
Abstract
Background and Purpose: Fully automated methods for segmentation and volume quantification of intraparenchymal hemorrhage (ICH), intraventricular hemorrhage extension (IVH), and perihematomal edema (PHE) are gaining increasing interest. Yet, reliabilities demonstrate considerable variances amongst each other. Our aim was therefore to evaluate both the intra- and interrater reliability of ICH, IVH and PHE on ground-truth segmentation masks. Methods: Patients with primary spontaneous ICH were retrospectively included from a German tertiary stroke center (Charité Berlin; January 2016–June 2020). Baseline and follow-up non-contrast Computed Tomography (NCCT) scans were analyzed for ICH, IVH, and PHE volume quantification by two radiology residents. Raters were blinded to all demographic and outcome data. Inter- and intrarater agreements were determined by calculating the Intraclass Correlation Coefficient (ICC) for a randomly selected set of patients with ICH, IVH, and PHE. Results: 100 out of 670 patients were included in the analysis. Interrater agreements ranged from an ICC of 0.998 for ICH (95% CI [0.993; 0.997]), to an ICC of 0.979 for IVH (95% CI [0.984; 0.993]), and an ICC of 0.886 for PHE (95% CI [0.760; 0.938]), all p-values p-values < 0.001. Conclusion Manual segmentations of ICH, IVH, and PHE demonstrate good-to-excellent inter- and intrarater reliabilities, with the highest agreement for ICH and IVH and lowest for PHE. Therefore, the degree of variances reported in fully automated quantification methods might be related amongst others to variances in ground-truth masks.
Keywords