Biomolecules (Feb 2020)

Microwave-Assisted versus Conventional Isolation of Glucosinolate Degradation Products from <i>Lunaria annua</i> L. and Their Cytotoxic Activity

  • Ivica Blažević,
  • Azra Đulović,
  • Vedrana Čikeš Čulić,
  • Marijana Popović,
  • Xavier Guillot,
  • Franko Burčul,
  • Patrick Rollin

DOI
https://doi.org/10.3390/biom10020215
Journal volume & issue
Vol. 10, no. 2
p. 215

Abstract

Read online

Glucosinolates (GSLs) from Lunaria annua L. seeds were analyzed qualitatively and quantitatively by their desulfo counterparts using UHPLC-DAD-MS/MS technique and by their volatile breakdown products, isothiocyanates (ITCs), using GC-MS technique. GSL breakdown products were obtained by conventional techniques (hydrodistillation in a Clevenger type apparatus (HD), CH2Cl2 extraction after myrosinase hydrolysis (EXT) for 24 h) as well as by modern techniques, microwave-assisted distillation (MAD) and microwave hydrodiffusion and gravity (MHG). Seven GSLs were identified as follows: isopropyl GSL (1), sec-butyl GSL (2), 5-(methylsulfinyl)pentyl GSL (3), 6-(methylsulfinyl)hexyl GSL (4), 5-(methylsulfanyl)pentyl GSL (5), 6-(methylsulfanyl)hexyl GSL (6), and benzyl GSL (7). Additionally, pent-4-enyl- and hex-5-enyl ITCs were detected in the volatile extracts. However, their corresponding GSLs were not detected using UHPLC-DAD-MS/MS. Thus, they are suggested to be formed during GC-MS analysis via thermolysis of 5-(methylsulfinyl)pentyl- and 6-(methylsulfinyl)hexyl ITCs, respectively. Volatile isolates were tested for their cytotoxic activity using MTT assay. EXT and MHG showed the best cytotoxic activity against human lung cancer cell line A549 during an incubation time of 72 h (IC50 18.8, and 33.5 μg/mL, respectively), and against breast cancer cell line MDA-MB-231 after 48 h (IC50 6.0 and 11.8 μg/mL, respectively). These activities can be attributed to the ITCs originating from 3 and 4.

Keywords