Royal Society Open Science (Jan 2015)

Life history of the most complete fossil primate skeleton: exploring growth models for Darwinius

  • Sergi López-Torres,
  • Michael A. Schillaci,
  • Mary T. Silcox

DOI
https://doi.org/10.1098/rsos.150340
Journal volume & issue
Vol. 2, no. 9

Abstract

Read online

Darwinius is an adapoid primate from the Eocene of Germany, and its only known specimen represents the most complete fossil primate ever found. Its describers hypothesized a close relationship to Anthropoidea, and using a Saimiri model estimated its age at death. This study reconstructs the ancestral permanent dental eruption sequences for basal Euprimates, Haplorhini, Anthropoidea, and stem and crown Strepsirrhini. The results show that the ancestral sequences for the basal euprimate, haplorhine and stem strepsirrhine are identical, and similar to that of Darwinius. However, Darwinius differs from anthropoids by exhibiting early development of the lower third molars relative to the lower third and fourth premolars. The eruption of the lower second premolar marks the point of interruption of the sequence in Darwinius. The anthropoid Saimiri as a model is therefore problematic because it exhibits a delayed eruption of P2. Here, an alternative strepsirrhine model based on Eulemur and Varecia is presented. Our proposed model shows an older age at death than previously suggested (1.05–1.14 years), while the range for adult weight is entirely below the range proposed previously. This alternative model is more consistent with hypotheses supporting a stronger relationship between adapoids and strepsirrhines.

Keywords