Atoms (Jun 2019)
Critical Stability of the Negatively Charged Positronium-Like Ions with Yukawa Potentials and Varying Z
Abstract
The question of stability of a given quantum system made up of charged particles is of fundamental interest in atomic, molecular, and nuclear physics. In this work, the stability for the negatively charged positronium (Ps)-like ions or the three-body system ( Z e + , e − , e − ) with Yukawa potentials is studied using correlated exponential wavefunctions based on the Ritz variational method. We obtained the critical screening parameter μ C as a function of the continuously varied nuclear charge Z , the critical nuclear charge Z C as a function of the screening parameter μ , and the ionization energies in terms of the screening parameter μ and Z . The critical nuclear charge for the bare Coulomb system ( Z e + , e − , e − ) obtained using 700-term correlated exponential wavefunctions is in accord with the reported results. The ionization energy, μ C , and Z C for the Yukawa system ( Z e + , e − , e − ) exhibit interesting behaviors. The present study describes the possible nonexistence of Borromean binding as well as Efimov states. The possible existence of quasi-bound resonances states for the negatively charged screened Ps-like ions is briefly discussed.
Keywords