Journal of Function Spaces and Applications (Jan 2003)

Sobolev capacity on the space W1, p(⋅)(ℝn)

  • Petteri Harjulehto,
  • Peter Hästö,
  • Mika Koskenoja,
  • Susanna Varonen

DOI
https://doi.org/10.1155/2003/895261
Journal volume & issue
Vol. 1, no. 1
pp. 17 – 33

Abstract

Read online

We define Sobolev capacity on the generalized Sobolev space W1, p(⋅)(ℝn). It is a Choquet capacity provided that the variable exponent p:ℝn→[1,∞) is bounded away from 1 and ∞. We discuss the relation between the Hausdorff dimension and the Sobolev capacity. As another application we study quasicontinuous representatives in the space W1, p(⋅)(ℝn).