Sensors (Aug 2022)

Epileptic Disorder Detection of Seizures Using EEG Signals

  • Mariam K. Alharthi,
  • Kawthar M. Moria,
  • Daniyal M. Alghazzawi,
  • Haythum O. Tayeb

DOI
https://doi.org/10.3390/s22176592
Journal volume & issue
Vol. 22, no. 17
p. 6592

Abstract

Read online

Epilepsy is a nervous system disorder. Encephalography (EEG) is a generally utilized clinical approach for recording electrical activity in the brain. Although there are a number of datasets available, most of them are imbalanced due to the presence of fewer epileptic EEG signals compared with non-epileptic EEG signals. This research aims to study the possibility of integrating local EEG signals from an epilepsy center in King Abdulaziz University hospital into the CHB-MIT dataset by applying a new compatibility framework for data integration. The framework comprises multiple functions, which include dominant channel selection followed by the implementation of a novel algorithm for reading XLtek EEG data. The resulting integrated datasets, which contain selective channels, are tested and evaluated using a deep-learning model of 1D-CNN, Bi-LSTM, and attention. The results achieved up to 96.87% accuracy, 96.98% precision, and 96.85% sensitivity, outperforming the other latest systems that have a larger number of EEG channels.

Keywords