Biomarker Research (Jun 2023)

EIF4A3-induced Circ_0001187 facilitates AML suppression through promoting ubiquitin-proteasomal degradation of METTL3 and decreasing m6A modification level mediated by miR-499a-5p/RNF113A pathway

  • Xinyu Yang,
  • Fengjiao Han,
  • Xiang Hu,
  • Guosheng Li,
  • Hanyang Wu,
  • Can Can,
  • Yihong Wei,
  • Jinting Liu,
  • Ruiqing Wang,
  • Wenbo Jia,
  • Chunyan ji,
  • Daoxin Ma

DOI
https://doi.org/10.1186/s40364-023-00495-4
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Aberrant expression of circRNAs has been proven to play a crucial role in the progression of acute myeloid leukemia (AML); however, its regulatory mechanism remains unclear. Herein, we identified a novel circRNA, Circ_0001187, which is downregulated in AML patients, and its low level contributes to a poor prognosis. We further validated their expression in large-scale samples and found that only the expression of Circ_0001187 was significantly decreased in newly diagnosed (ND) AML patients and increased in patients with hematological complete remission (HCR) compared with controls. Knockdown of Circ_0001187 significantly promoted proliferation and inhibited apoptosis of AML cells in vitro and in vivo, whereas overexpression of Circ _0001187 exerted the opposite effects. Interestingly, we found that Circ_0001187 decreases mRNA m6A modification in AML cells by enhancing METTL3 protein degradation. Mechanistically, Circ_0001187 sponges miR-499a-5p to enhance the expression of E3 ubiquitin ligase RNF113A, which mediates METTL3 ubiquitin/proteasome-dependent degradation via K48-linked polyubiquitin chains. Moreover, we found that the low expression of Circ _0001187 is regulated by promoter DNA methylation and histone acetylation. Collectively, our findings highlight the potential clinical implications of Circ _0001187 as a key tumor suppressor in AML via the miR-499a-5p/RNF113A/METTL3 pathway.

Keywords