PLoS ONE (Jan 2021)
Effect of warm-up and muscle fatiguing exercise on knee joint sounds in motion by vibroarthrography: A randomized crossover trial.
Abstract
Vibroarthrography measures joint sounds caused by sliding of the joint surfaces over each other. and can be affected by joint health, load and type of movement. Since both warm-up and muscle fatigue lead to local changes in the knee joint (e.g., temperature increase, lubrication of the joint, muscle activation), these may impact knee joint sounds. Therefore, this study investigates the effects of warm-up and muscle fatiguing exercise on knee joint sounds during an activity of daily living. Seventeen healthy, physically active volunteers (25.7 ± 2 years, 7 males) performed a control and an intervention session with a wash-out phase of one week. The control session consisted of sitting on a chair, while the intervention session contained a warm-up (walking on a treadmill) followed by a fatiguing exercise (modified sit-to-stand) protocol. Knee sounds were recorded by vibroarthrography (at the medial tibia plateau and at the patella) at three time points in each session during a sit-to-stand movement. The primary outcome was the mean signal amplitude (MSA, dB). Differences between sessions were determined by repeated measures ANOVA with intra-individual pre-post differences for the warm-up and for the muscle fatigue effect. We found a significant difference for MSA at the medial tibia plateau (intervention: mean 1.51 dB, standard deviation 2.51 dB; control: mean -1.28 dB, SD 2.61 dB; F = 9.5; p = .007; η2 = .37) during extension (from sit to stand) after the warm-up. There was no significant difference for any parameter after the muscle fatiguing exercise (p > .05). The increase in MSA may mostly be explained by an increase in internal knee load and joint friction. However, neuromuscular changes may also have played a role. It appears that the muscle fatiguing exercise has no impact on knee joint sounds in young, active, symptom-free participants during sit to stand.