Gels (Jul 2022)

Enhanced Development of Sweat Latent Fingerprints Based on Ag-Loaded CMCS/PVA Composite Hydrogel Film by Electron Beam Radiation

  • Jinyu Yang,
  • Yayang Wang,
  • Yuan Zhao,
  • Dongliang Liu,
  • Lu Rao,
  • Zhijun Wang,
  • Lili Fu,
  • Yifan Wang,
  • Xiaojie Yang,
  • Yuesheng Li,
  • Yi Liu

DOI
https://doi.org/10.3390/gels8070446
Journal volume & issue
Vol. 8, no. 7
p. 446

Abstract

Read online

Over time, difficulties have been encountered in detecting potential fingerprints. In this study, an Ag/CMCS/PVA(ACP) hydrogel film was developed for fingerprint development by electron beam radiation method. The chemical bond, thermostability, chemical components, microstructure, and micromorphology of the CMCS/PVA composite hydrogel film were characterized by FT-IR, TG, XRD, and SEM, respectively. Swelling behaviors and mechanical performance of the CMCS/PVA composite hydrogel were also investigated at different irradiation doses, pH, media, and NaCl contents to obtain the optimum preparation conditions. Through experimental exploration, we found that the fingerprints appeared more obvious when the irradiated prepared ACP hydrogel film was sprayed with 0.6 mg/mL of Ag+ and the excitation wavelength was about 254 nm with UV lamp irradiation for 20 min. The cytotoxicity the CMCS/PVA composite hydrogel on mouse skin fibroblasts L929 cells was also studied, confirming its biological security. Sweat latent fingerprint manifestation has important scientific significance with respect to the development of new processes and functional materials in the field of fingerprint manifestation, enriching and complementing the application of composite hydrogels.

Keywords