Complexity (Jan 2018)
Dynamical Techniques for Analyzing Iterative Schemes with Memory
Abstract
We construct a new biparametric three-point method with memory to highly improve the computational efficiency of its original partner, without adding functional evaluations. In this way, through different estimations of self-accelerating parameters, we have modified an existing seventh-order method. The parameters have been defined by Hermite interpolating polynomial that allows the accelerating effect. In particular, the R-order of the proposed iterative method with memory is increased from seven to ten. A real multidimensional analysis of the stability of this method with memory is made, in order to study its dependence on the initial estimations. Taking into account that usually iterative methods with memory are more stable than their derivative-free partners and the obtained results in this study, the behavior of this scheme shows to be excellent, but for a small domain. Numerical examples and comparison are also provided, confirming the theoretical results.