Energies (Aug 2024)

An Impact Assessment of a Transportable BESS on the Protection of Conventional Distribution Systems

  • Antonio E. C. Momesso,
  • Pedro H. A. Barra,
  • Pedro I. N. Barbalho,
  • Eduardo N. Asada,
  • José C. M. Vieira,
  • Denis V. Coury

DOI
https://doi.org/10.3390/en17164196
Journal volume & issue
Vol. 17, no. 16
p. 4196

Abstract

Read online

The integration of new battery technologies has become a focal point for distribution utilities, driven by decreasing costs and the need for fast responsiveness. Transportable battery energy storage systems (TBESSs) offer additional flexibility, allowing connection at multiple substations or grid feed points. However, concerns remain regarding their impact on distribution systems (DSs), particularly on protection devices (PDs). This study addresses these concerns by investigating the influence of TBESSs on the protection systems of a real-world distribution network. Given the lack of studies in the current literature on this topic, this research aims to fill this gap by examining the potential effects of TBESS integration on PDs, such as reclosers and fuses, within a DS. Utilizing a model based on real data from a Brazilian utility, we conducted simulations to analyze the effects of TBESSs in both charging and discharging modes on the protection systems of three feeders. The methodology involved assessing variations in the operation times and coordination of PDs to determine if TBESS integration would necessitate adjustments to existing protection configurations. The results demonstrated that TBESS integration resulted in only minor variations in PD operating times, typically within hundredths of a second, indicating a negligible impact on protection performance. Consequently, no significant modifications to the protection system are required to accommodate TBESSs. These findings suggest that TBESSs can be seamlessly integrated into existing distribution networks, maintaining system reliability and operational integrity. This study provides valuable insights and a robust procedure for utilities to analyze the integration of TBESSs, supporting the effective deployment of modern energy storage solutions in DSs.

Keywords