PLoS ONE (Jan 2009)
The Noc-domain containing C-terminus of Noc4p mediates both formation of the Noc4p-Nop14p submodule and its incorporation into the SSU processome.
Abstract
Noc1p, Noc3p and Noc4p are eukaryotic proteins which play essential roles in yeast ribosome biogenesis and contain a homologous stretch of about 45 aminoacids (Noc-domain) of unknown function. Yeast Noc4p is a component of the small ribosomal subunit (SSU) processome, can be isolated as a stable Noc4p-Nop14p SSU-processome submodule from yeast cells, and is required for nuclear steps of small ribosomal subunit rRNA maturation. We expressed a series of mutated alleles of NOC4 in yeast cells and analysed whether the corresponding protein variants support vegetative growth, interact with Nop14p, and are incorporated into the SSU-processome. The data reveal that the essential C-terminus of Noc4p which contains 237 aminoacids including the Noc-domain represents a protein-protein interaction module. It is required and sufficient for its association with Nop14p and several nuclear precursors of the small ribosomal subunit. The N-terminal Noc4-part seems to be targeted to pre-ribosomes via the C-terminus of Noc4p and plays there an essential role in SSU-processome function. Replacement of the Noc4p-Noc-domain by its homologues Noc1p-counterpart results in a hybrid Noc4p variant which fails to associate with Nop14p and pre-ribosomes. On the other hand, exchange of 6 amino acids in the Noc1-Noc-domain of this hybrid Noc4p protein is sufficient to restore its essential in vivo functions. These data suggest that Noc-domains of Noc1p and Noc4p share a common structural backbone in which diverging amino acids play crucial roles in mediating specific regulated interactions. Our analysis allows us to distinguish between different functions of certain domains within Noc4p and contribute to the understanding of how incorporation of Noc4p into ribosomal precursors is coupled to rRNA processing and maturation of the small ribosomal subunit.