Scientific Reports (Jan 2022)

Identification of a clonal population of Aspergillus flavus by MALDI-TOF mass spectrometry using deep learning

  • Anne-Cécile Normand,
  • Aurélien Chaline,
  • Noshine Mohammad,
  • Alexandre Godmer,
  • Aniss Acherar,
  • Antoine Huguenin,
  • Stéphane Ranque,
  • Xavier Tannier,
  • Renaud Piarroux

DOI
https://doi.org/10.1038/s41598-022-05647-4
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 8

Abstract

Read online

Abstract The spread of fungal clones is hard to detect in the daily routines in clinical laboratories, and there is a need for new tools that can facilitate clone detection within a set of strains. Currently, Matrix Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry is extensively used to identify microbial isolates at the species level. Since most of clinical laboratories are equipped with this technology, there is a question of whether this equipment can sort a particular clone from a population of various isolates of the same species. We performed an experiment in which 19 clonal isolates of Aspergillus flavus initially collected on contaminated surgical masks were included in a set of 55 A. flavus isolates of various origins. A simple convolutional neural network (CNN) was trained to detect the isolates belonging to the clone. In this experiment, the training and testing sets were totally independent, and different MALDI-TOF devices (Microflex) were used for the training and testing phases. The CNN was used to correctly sort a large portion of the isolates, with excellent (> 93%) accuracy for two of the three devices used and with less accuracy for the third device (69%), which was older and needed to have the laser replaced.