Crystals (Feb 2023)
Study on Surface Roughness Improvement of Selective Laser Melted Ti6Al4V Alloy
Abstract
To improve the surface quality of Ti6Al4V parts formed by selective laser melting (SLM), this paper systematically studies the effects of laser power, scanning speed and inclination angle on the different surface morphology and roughness of parts. On this basis, the effect of surface remelting and multi-layer profile scanning process strategies on improving the surface quality of parts is explored. The upper surface roughness varies parabolically with increasing line energy density, the line energy density value that minimizes the upper surface roughness is around 0.22 J/mm, and the minimum Ra value is 4.41 μm. The roughness of upper and lower sides increases significantly with the increase in scanning speed. As the inclination angle increases, the roughness of the upper and lower sides gradually decreases, which is caused by the combined influence of powder adhesion and step effect. The surface remelting process strategy can reduce the upper surface roughness by 35.68% and reduce its Ra value to 2.65 μm. The multi-layer profile scanning process strategy can reduce the upper side and vertical side roughness by more than 50%, down to Ra 5.10 μm and Ra 4.61 μm, respectively.
Keywords