Nutrition & Metabolism (Nov 2017)
Antiobesity potential of Piperonal: promising modulation of body composition, lipid profiles and obesogenic marker expression in HFD-induced obese rats
Abstract
Abstract Background Black pepper or Piper nigrum is a well-known spice, rich in a variety of bioactive compounds, and widely used in many cuisines across the world. In the Indian traditional systems of medicine, it is used to treat gastric and respiratory ailments. The purpose of this investigation is to study the antihyperlipidemic and antiobesity effects of piperonal in high-fat diet (HFD)-induced obese rats. Methods Piperonal, an active constituent of Piper nigrum seeds, was isolated and confirmed by HPLC, 1H and 13C NMR spectroscopy. Male SD rats were fed on HFD for 22 weeks; Piperonal was supplemented from the 16th week as mentioned in the experimental design. Changes in body weight and body composition were measured by TOBEC, bone mineral composition and density were measured by DXA, and adipose tissue distribution was measured by 7 T–MRI. Plasma levels of glucose, insulin, insulin resistance and lipid profiles of plasma, liver and kidney, adipocyte hormones and liver antioxidants were evaluated using standard kit methods. Expression levels of adipogenic and lipogenic genes, such as PPAR-γ, FAS, Fab-4, UCP-2, SREBP-1c, ACC, HMG-COA and TNF-α were measured by RT-PCR. Histopathological examination of adipose and liver tissues was also carried out in experimental rats. Results HFD substantially induced body weight, fat%, adipocyte size, circulatory and tissue lipid profiles. It elevated the plasma levels of insulin, insulin resistance and leptin but decreased the levels of adiponectin, BMC and BMD. Increased expression of PPAR-γ, FAS, Fab-4, UCP-2, SREBP-1c, ACC, and TNF-α was noticed in HFD-fed rats. However, supplementation of piperonal (20, 30 and 40 mg/kg b.wt) for 42 days considerably and dose-dependently attenuated the HFD-induced alterations, with the maximum therapeutic activity being noticed at 40 mg/kg b.wt. Conclusions Piperonal significantly attenuated HFD-induced body weight and biochemical changes through modulation of key lipid metabolizing and obesogenic genes. Our findings demonstrate the efficacy of piperonal as a potent antiobesity agent, provide scientific evidence for its traditional use and suggest the possible mechanism of action.
Keywords