APL Photonics (Apr 2022)

Graphene/Ge microcrystal photodetectors with enhanced infrared responsivity

  • Virginia Falcone,
  • Andrea Ballabio,
  • Andrea Barzaghi,
  • Carlo Zucchetti,
  • Luca Anzi,
  • Federico Bottegoni,
  • Jacopo Frigerio,
  • Roman Sordan,
  • Paolo Biagioni,
  • Giovanni Isella

DOI
https://doi.org/10.1063/5.0082421
Journal volume & issue
Vol. 7, no. 4
pp. 046106 – 046106-6

Abstract

Read online

We report on the electrical and optical properties of microcrystal arrays obtained by depositing Ge on a deeply patterned Si substrate. Finite difference time domain simulations indicate that the faceted morphology and high refractive index of Ge microcrystals lead to strong light trapping effects, enhancing infrared light absorption in the spectral window between the direct and indirect absorption edge of Ge (≈1550–1800 nm). This is experimentally confirmed by fabricating microcrystal-based Ge-on-Si photodiodes employing graphene as a top transparent contact. In these devices, the ratio between the responsivities at 1550 and 1700 nm is more than ten times larger than that of photodiodes based on conventional Ge-on-Si epilayers.