Insights into Imaging (Jun 2024)
Quantitative US fat fraction for noninvasive assessment of hepatic steatosis in suspected metabolic-associated fatty liver disease
Abstract
Abstract Objectives To evaluate the agreement between quantitative ultrasound system fat fraction (USFF) and proton magnetic resonance spectroscopy (1H-MRS) and the diagnostic value of USFF in assessing metabolic-associated fatty liver disease (MAFLD). Methods The participants with or suspected of MAFLD were prospectively recruited and underwent 1H-MRS, USFF, and controlled attenuation parameter (CAP) measurements. The correlation between USFF and 1H-MRS was assessed using Pearson correlation coefficients. The USFF diagnostic performance for different grades of steatosis was evaluated using receiver operating characteristic curve analysis (ROC) and was compared with CAP, visual hepatic steatosis grade (VHSG). Results A total of 113 participants (mean age 44.79 years ± 13.56 (SD); 71 males) were enrolled, of whom 98 (86.73%) had hepatic steatosis (1H-MRS ≥ 5.56%). USFF showed a good correlation (Pearson r = 0.76) with 1H-MRS and showed a linear relationship, which was superior to the correlation between CAP and 1H-MRS (Pearson r = 0.61). The USFF provided high diagnostic performance for different grades of hepatic steatosis, with ROC from 0.84 to 0.98, and the diagnostic performance was better than that of the CAP and the VHSG. The cut-off values of the USFF were different for various grades of steatosis, and the cut-off values for S1, S2, and S3 were 12.01%, 19.98%, and 22.22%, respectively. Conclusions There was a good correlation between USFF and 1H-MRS. Meanwhile, USFF had good diagnostic performance for hepatic steatosis and was superior to CAP and VHSG. USFF represents a superior method for noninvasive quantitative assessment of MAFLD. Critical relevance statement Quantitative ultrasound system fat fraction (USFF) accurately assesses liver fat content and has a good correlation with magnetic resonance spectroscopy (1H-MRS) for the assessment of metabolic-associated fatty liver disease (MAFLD), as well as for providing an accurate quantitative assessment of hepatic steatosis. Key Points Current diagnostic and monitoring modalities for metabolic-associated fatty liver disease have limitations. USFF correlated well with 1H-MRS and was superior to the CAP. USFF has good diagnostic performance for steatosis, superior to CAP and VHSG. Graphical Abstract
Keywords