Molecules (Apr 2023)

Optimization of Physical Refining Process of Camellia Oil for Reduction of 3-Monochloropropane-1,2-Diol (3-MCPD) Ester Formation Using Response Surface Methodology on a Laboratory Scale

  • Liqun Zhang,
  • Pinggu Wu,
  • Xiaoling Xiang,
  • Dajin Yang,
  • Liyuan Wang,
  • Zhengyan Hu

DOI
https://doi.org/10.3390/molecules28083616
Journal volume & issue
Vol. 28, no. 8
p. 3616

Abstract

Read online

Refined and deodorized camellia oil has been reported to contain a high amount of 3-monochloropropane-1,2-diol esters (3-MCPDE) due to the high-temperature deodorization step. To reduce 3-MCPDE in camellia oil, the physical refining process of camellia oil was simulated on a laboratory scale. Response surface methodology (RSM) was designed to modify and optimize the refining process with five processing parameters (water degumming dosage, degumming temperature, activated clay dosage, deodorization temperature and deodorization time). The optimized new refining approach achieved a 76.9% reduction in 3-MCPDE contents, in which the degumming moisture was 2.97%, the degumming temperature was 50.5 °C, the activated clay dosage was 2.69%, the deodorizing temperature was 230 °C, and the deodorizing time was 90 min. A significance test and analysis of variance results demonstrated that the deodorization temperature and deodorization time contributed significantly to the reduction of 3-MCPD ester. The joint interaction effects of activated clay dosage and deodorization temperature were significant for 3-MCPD ester formation.

Keywords