Energies (Jan 2021)
Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example
Abstract
This paper presents a complete methodology, together with its implementation as a web application, for monitoring smart buildings. The approach uses unfold-Principal Component Analysis (unfold-PCA) as a batch projection method and two statistics, Hotelling’s T-squared (T2) and the squared prediction error (SPE), for alarm generation resulting in two simple control charts independently on the number of variables involved. The method consists of modelling the normal operating conditions of a building (entire building, room or subsystem) with latent variables described expressing the principal components. Thus, the method allows detecting faults and misbehaviour as a deviation of previously mentioned statistics from their statistical thresholds. Once a fault or misbehaviour is detected, the isolation of sensors that mostly contribute to such detection is proposed as a first step for diagnosis. The methodology has been implemented under a SaaS (software as a service) approach to be offered to multiple buildings as an on-line application for facility managers. The application is general enough to be used for monitoring complete buildings, or parts of them, using on-line data. A complete example of use for monitoring the performance of the air handling unit of a lecture theatre is presented as demonstrative example and results are discussed
Keywords