Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki (Dec 2019)
EFFECT OF SUNLIGHT ON THE ELECTRICAL CHARACTERISTICS OF THE HETEROSTRUCTURE TITANIUM DIOXIDE/SILICON
Abstract
Electrical characteristics of the heterostructure titanium dioxide/silicon illuminated by the sun light were theoretically modeled. The modeling process includes consideration of generation of the charge carriers and their transport through the practically important heterostructure n-TiO2/p-Si. The current through the structure under small external bias up to 0.6 V was found to depend nonlinearly on the light wavelength. It is controlled by the movement of the electrons from silicon to the titanium dioxide. The highest current corresponds to the wavelengths of about 600 nm. The results obtained are explained by the difference in the absorption coefficients and reflectivity of titanium dioxide and silicon which determine generation of nonequilibrium charge carriers in the heterostructure n-TiO2/p-Si. It was demonstrated that under illumination of the unbiased heterostructure with the light of 500–600 nm the generated electrons freely move from the titanium dioxide to silicon while the movement of holes is blocked. It helps to concentrate electrons in the relatively thin nearsurface layer of titanium dioxide and use them for catalytic purification of water and air by oxidation of organic pollutants at its surface. The regularities observed are important in the detailed analysis of electronic processes at the surface of wide band gap semiconducting metal oxides and their practical application in photocatalytic processes.
Keywords