Forests (May 2022)

Mapping China’s Forest Fire Risks with Machine Learning

  • Yakui Shao,
  • Zhongke Feng,
  • Linhao Sun,
  • Xuanhan Yang,
  • Yudong Li,
  • Bo Xu,
  • Yuan Chen

DOI
https://doi.org/10.3390/f13060856
Journal volume & issue
Vol. 13, no. 6
p. 856

Abstract

Read online

Forest fires are disasters that are common around the world. They pose an ongoing challenge in scientific and forest management. Predicting forest fires improves the levels of forest-fire prevention and risk avoidance. This study aimed to construct a forest risk map for China. We base our map on Visible Infrared Imaging Radiometer Suite data from 17,330 active fires for the period 2012–2019, and combined terrain, meteorology, social economy, vegetation, and other factors closely related to the generation of forest-fire disasters for modeling and predicting forest fires. Four machine learning models for predicting forest fires were compared (i.e., random forest (RF), support vector machine (SVM), multi-layer perceptron (MLP), and gradient-boosting decision tree (GBDT) algorithm), and the RF model was chosen (its accuracy, precision, recall, F1, AUC values were 87.99%, 85.94%, 91.51%, 88.64% and 95.11% respectively). The Chinese seasonal fire zoning map was drawn with the municipal administrative unit as the spatial scale for the first time. The results show evident seasonal and regional differences in the Chinese forest-fire risks; forest-fire risks are relativity high in the spring and winter, but low in fall and summer, and the areas with high regional fire risk are mainly in the provinces of Yunnan (including the cities of Qujing, Lijiang, and Yuxi), Guangdong (including the cities of Shaoguan, Huizhou, and Qingyuan), and Fujian (including the cities of Nanping and Sanming). The major contributions of this study are to (i) provide a framework for large-scale forest-fire risk prediction having a low cost, high precision, and ease of operation, and (ii) improve the understanding of forest-fire risks in China.

Keywords