Applied Sciences (Jun 2020)

Photolysis and TiO<sub>2</sub> Photocatalytic Treatment under UVC/VUV Irradiation for Simultaneous Degradation of Pesticides and Microorganisms

  • Sung Won Choi,
  • Hafiz Muhammad Shahbaz,
  • Jeong Un Kim,
  • Da-Hyun Kim,
  • Sohee Yoon,
  • Se Ho Jeong,
  • Jiyong Park,
  • Dong-Un Lee

DOI
https://doi.org/10.3390/app10134493
Journal volume & issue
Vol. 10, no. 13
p. 4493

Abstract

Read online

Efficiencies of various treatments for UVC photolysis (ultraviolet light-C at 254 nm), VUV photolysis (vacuum ultraviolet light at 254 nm and 185 nm), UVC-assisted titanium dioxide photocatalysis (UVC-TiO2), and VUV-assisted titanium dioxide photocatalysis (VUV-TiO2) were investigated for the degradation of pesticides including pyraclostrobin, boscalid, fludioxonil, and azoxystrobin and inactivation of microorganisms Escherichia coli K12 as a surrogate for E. coli O157:H7 and Saccharomyces cerevisiae in aqueous solutions and on the surface of fresh cut carrots. The degradation efficiencies of VUV were higher than for UVC on pesticides in aqueous solutions. However, there was no significant difference between degradation efficiencies for UVC and UVC-TiO2 treatments, and between VUV and VUV-TiO2 treatments. UVC, VUV, UVC-TiO2, and VUV-TiO2 showed similar inactivation effects against E. coli K12 and S. cerevisiae in aqueous solutions. The combined use of UVC and VUV treatments (combined UV) and combined use of UVC-TiO2 and VUV-TiO2 treatments (combined UV-TiO2) showed higher efficiencies (72–94% removal) for the removal of residual pesticides on fresh cut carrots than bubble water washing (53–73% removal). However, there was no significant difference in removal efficiency between combined UV and combined UV-TiO2 treatments. For E. coli K12 and S. cerevisiae on fresh cut carrots, the combined UV-TiO2 treatment (1.5 log and 1.6 log reduction, respectively) showed slightly higher inactivation effects than combined UV (1.3 log and 1.2 log reduction, respectively). Photolysis and TiO2 photocatalytic treatments under UV irradiation, including VUV as a light source, showed potential for the simultaneous degradation of pesticides and microorganisms as a non-chemical and residue-free technique for surface disinfection of fresh produce.

Keywords