PLoS ONE (Jan 2014)

Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control.

  • Sadaf Hasan,
  • Kunal Singh,
  • Mohd Danisuddin,
  • Praveen K Verma,
  • Asad U Khan

DOI
https://doi.org/10.1371/journal.pone.0091736
Journal volume & issue
Vol. 9, no. 3
p. e91736

Abstract

Read online

OBJECTIVES: To evaluate the synergistic effect of Quercitrin and Deoxynojirimycin (DNJ) together with their individual inhibitory effect against virulence pathways of Streptococcus mutans. METHODOLOGY: MICs of both the compounds were determined by the microdilution method, followed by their in vitrosynergy using checkerboard and time kill assay. The nature of interaction was classified as synergistic on the basis of fractional inhibitory concentration index (FICI) value of ≤0.5. Furthermore, the activity of Quercitrin and DNJ was evaluated individually and in combination against various cariogenic properties of S. mutans UA159 such as acidogenesis, aciduracity, glucan production, hydrophobicity, biofilm and adherence. Moreover, expression of virulent genes in S. mutans was analysed by quantitative RT- PCR (qRT-PCR) and inhibition of F1F0-ATPase, lactate dehydrogenase and enolase was also evaluated. Finally, scanning electron microscopy (SEM) was used to investigate structural obliteration of biofilm. RESULTS: The in vitro synergism between Quercitrin and DNJ was observed, with a FICI of 0.313. Their MIC values were found to be 64 μg/ml and 16 μg/ml respectively. The synergistic combination consistently showed best activity against all the virulence factors as compared to Quercitrin and DNJ individually. A reduction in glucan synthesis and biofilm formation was observed at different phases of growth. The qRT-PCR revealed significant downregulation of various virulent genes. Electron micrographs depicted the obliteration of biofilm as compared to control and the activity of cariogenic enzymes was also inhibited. CONCLUSIONS: The whole study reflects a prospective role of Quercitrin and DNJ in combination as a potent anticariogenic agent against S. mutans.