Scientific Reports (Jul 2024)
Optimal scheduling model using the IGDT method for park integrated energy systems considering P2G–CCS and cloud energy storage
Abstract
Abstract To enhance the energy efficiency and financial gains of the park integrated energy system (PIES). This paper constructs a bi-level optimization model of PIES-cloud energy storage (CES) based on source-load uncertainty. Firstly, the scheduling framework of PIES with refined power-to-gas (P2G), carbon capture and storage (CCS) and CES coupling is constructed. Moreover, a bi-level optimization model with the upper tier subject being the PIES operator and the lower tier subject being the CES operator is established under the ladder-type carbon price mechanism with reward and punishment (LCPMRP). Then a proposed entropy weight adaptive information gap decision theory method (EAIGDT) is proposed to eliminate the subjectivity factor and retain its non-probabilistic features while dealing with multiple source-load uncertainties, and according to the operator’s risk preference to build risk-averse (RA) and risk-seeking (RS) strategies, respectively. Finally, the measured data in a certain area of Xinjiang verifies the proposed optimal scheduling method. The results show that the method can effectively take into account the interests of various subjects and realise PIES low-carbon economic operation.