Alzheimer’s Research & Therapy (Jul 2024)

The presence of circulating human apolipoprotein J reduces the occurrence of cerebral microbleeds in a transgenic mouse model with cerebral amyloid angiopathy

  • Anna Bonaterra-Pastra,
  • Montse Solé,
  • Silvia Lope-Piedrafita,
  • Maria Lucas-Parra,
  • Laura Castellote,
  • Paula Marazuela,
  • Olalla Pancorbo,
  • David Rodríguez-Luna,
  • Mar Hernández-Guillamon

DOI
https://doi.org/10.1186/s13195-024-01541-5
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β (Aβ) deposition in cerebral vessels, leading to lobar cerebral microbleeds (CMB) and intracerebral hemorrhages (ICH). Apolipoprotein J (ApoJ) is a multifunctional chaperone related to Aβ aggregation and clearance. Our study investigated the vascular impact of chronic recombinant human Apolipoprotein J (rhApoJ) treatment in a transgenic mouse model of β-amyloidosis with prominent CAA. Methods Twenty-month-old APP23 C57BL/6 mice received 25 doses of rhApoJ (1 mg/kg) (n = 9) or saline (n = 8) intraperitoneally for 13 weeks, while Wild-type (WT) mice received saline (n = 13). Postmortem brains underwent T2*-weighted magnetic resonance imaging (MRI) to detect hemorrhagic lesions. Aβ levels and distribution, cerebral fibrinogen leakage, brain smooth muscle actin (sma), and plasma matrix metalloproteinases and inflammatory markers were analyzed after treatments. Additionally, plasma samples from 22 patients with lobar ICH were examined to determine the clinical relevance of the preclinical findings. Results rhApoJ-treated APP23 presented fewer cortical CMBs (50–300 μm diameter) (p = 0.012) and cortical larger hemorrhages (> 300 μm) (p = 0.002) than saline-treated mice, independently of Aβ brain levels. MRI-detected hemorrhagic lesions correlated with fibrinogen cerebral extravasation (p = 0.011). Additionally, rhApoJ-treated mice presented higher number of sma-positive vessels than saline-treated mice (p = 0.038). In rhApoJ-treated mice, human ApoJ was detected in plasma and in occasional leptomeningeal vessels, but not in the parenchyma, suggesting that its mechanism of action operates through the periphery. The administration of rhApoJ induced an increase in plasma Groα (p = 0.035) and MIP-1α (p = 0.035) levels, while lower MMP-12 (p = 0.046) levels, compared to the saline-treated group. In acute lobar ICH patients, MMP-12 plasma levels correlated with larger hemorrhage volume (p = 0.040) and irregular ICH shape (p = 0.036). Conclusions Chronic rhApoJ treatment in aged APP23 mice ameliorated CAA-related neurovascular damage by reducing the occurrence of CMB. We propose that rhApoJ may prevent blood-brain barrier (BBB) leakage and CMB appearance partly through circulating MMP-12 modulation.

Keywords