Plants (Feb 2021)

Evaluation of Physiological and Morphological Traits for Improving Spring Wheat Adaptation to Terminal Heat Stress

  • Hafeez ur Rehman,
  • Absaar Tariq,
  • Imran Ashraf,
  • Mukhtar Ahmed,
  • Adele Muscolo,
  • Shahzad M. A. Basra,
  • Matthew Reynolds

DOI
https://doi.org/10.3390/plants10030455
Journal volume & issue
Vol. 10, no. 3
p. 455

Abstract

Read online

Wheat crop experiences high temperature stress during flowering and grain-filling stages, which is termed as “terminal heat stress”. Characterizing genotypes for adaptive traits could increase their selection for better performance under terminal heat stress. The present study evaluated the morpho-physiological traits of two spring wheat cultivars (Millet-11, Punjab-11) and two advanced lines (V-07096, V-10110) exposed to terminal heat stress under late sowing. Early maturing Millet-11 was used as heat-tolerant control. Late sowing reduced spike length (13%), number of grains per spike (10%), 1000-grain weight (13%) and biological yield (15–20%) compared to timely sowing. Nonetheless, higher number of productive tillers per plant (19–20%) and grain yield (9%) were recorded under late sowing. Advanced lines and genotype Punjab-11 had delayed maturity and better agronomic performance than early maturing heat-tolerant Millet-11. Advanced lines expressed reduced canopy temperature during grain filling and high leaf chlorophyll a (20%) and b (71–125%) contents during anthesis under late sowing. All wheat genotypes expressed improved stem water-soluble carbohydrates under terminal heat stress that were highest for heat-tolerant Millet-11 genotype during anthesis. Improved grain yield was associated with the highest chlorophyll contents showing stay green characteristics with maintenance of high photosynthetic rates and cooler canopies under late sowing. The results revealed that advanced lines and Punjab-11 with heat adaptive traits could be promising source for further use in the selection of heat-tolerant wheat genotypes.

Keywords