Heliyon (Apr 2024)
Construction of influencing factor segmentation and intelligent prediction model of college students' cell phone addiction model based on machine learning algorithm
Abstract
Mobile phone addiction among college students has emerged as a prevalent phenomenon in contemporary society, posing significant challenges to the development and well-being of these individuals. The assessment of the extent of mobile phone addiction has become an urgent concern in the present context. This study employed a sample of 3000 college students from a public university in Zhejiang Province, China, to gather questionnaire data. By utilizing a machine learning algorithm, we identified the most salient factors associated with college students' addiction, with perfectionism emerging as the primary influencer. Additionally, a machine learning-based prediction model for college students' cell phone addiction was developed, yielding a prediction accuracy of 76.68%. This intelligent model can serve as a reliable tool for subsequent evaluations of college students' cell phone addiction.