Scientific Reports (Jan 2024)

Omicron-specific and bivalent omicron-containing vaccine candidates elicit potent virus neutralisation in the animal model

  • Asghar Abdoli,
  • Hamidreza Jamshidi,
  • Mohammad Taqavian,
  • Mehdi Lari Baghal,
  • Hasan Jalili

DOI
https://doi.org/10.1038/s41598-023-50822-w
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Omicron variant (B.1.1.529) is able to escape from naturally acquired and vaccine-induced immunity, which mandates updating the current COVID-19 vaccines. Here, we investigated and compared the neutralising antibody induction of the ancestral variant-based BIV1-CovIran vaccine, the Omicron variant-based BIV1-CovIran Plus vaccine, and the novel bivalent vaccine candidate, BBIV1-CovIran, against the Omicron and ancestral Wuhan variants on the rat model. After inactivating the viral particles, the viruses were purified and formulated. Bivalent vaccines were a composition of 2.5 µg (5 µg total) or 5 µg (10 µg total) doses of each ansectral-based and Omicron-based monovalent vaccine. Subsequently, the potency of the monovalent and bivalent vaccines was investigated using the virus neutralisation test (VNT). The group that received three doses of the Omicron-specific vaccine demonstrated neutralisation activity against the Omicron variant with a geometric mean titer of 337.8. However, three doses of the Wuhan variant-specific vaccine could neutralise the Omicron variant at a maximum of 1/32 serum dilution. The neutralisation activity of the Omicron-specific vaccine, when administered as the booster dose after two doses of the Wuhan variant-specific vaccine, was 100% against the Omicron variant and the Wuhan variant at 1/64 and 1/128 serum dilution, respectively. Three doses of 5 µg bivalent vaccine could effectively neutralise both variants at the minimum of 1/128 serum dilution. The 10 µg bivalent vaccine at three doses showed even higher neutralisation titers: the geometric mean of 388 (95% CI 242.2–621.7) against Omicron and 445.7 (95% CI 303.3–655.0) against Wuhan. It is shown that the candidate bivalent and Omicron-specific vaccines could elicit a potent immune response against both Wuhan-Hu-1 and Omicron BA.1 variants.