Plants (Mar 2024)

Soil, Plant, and Microorganism Interactions Drive Secondary Succession in Alpine Grassland Restoration

  • Chenglong Han,
  • Defei Liang,
  • Weidi Zhou,
  • Qiuyun Xu,
  • Mingxue Xiang,
  • Yanjie Gu,
  • Kadambot H. M. Siddique

DOI
https://doi.org/10.3390/plants13060780
Journal volume & issue
Vol. 13, no. 6
p. 780

Abstract

Read online

Plant secondary succession has been explored extensively in restoring degraded grasslands in semiarid or dry environments. However, the dynamics of soil microbial communities and their interactions with plant succession following restoration efforts remain understudied, particularly in alpine ecosystems. This study investigates the interplay between soil properties, plant communities, and microbial populations across a chronosequence of grassland restoration on the Qinghai–Tibet Plateau in China. We examined five succession stages representing artificial grasslands of varying recovery durations from 0 to 19. We characterized soil microbial compositions using high-throughput sequencing, enzymatic activity assessments, and biomass analyses. Our findings reveal distinct plant and microbial secondary succession patterns, marked by increased soil organic carbon, total phosphorus, and NH4+-N contents. Soil microbial biomass, enzymatic activities, and microbial community diversity increased as recovery time progressed, attributed to increased plant aboveground biomass, cover, and diversity. The observed patterns in biomass and diversity dynamics of plant, bacterial, and fungal communities suggest parallel plant and fungal succession occurrences. Indicators of bacterial and fungal communities, including biomass, enzymatic activities, and community composition, exhibited sensitivity to variations in plant biomass and diversity. Fungal succession, in particular, exhibited susceptibility to changes in the soil C: N ratio. Our results underscore the significant roles of plant biomass, cover, and diversity in shaping microbial community composition attributed to vegetation-induced alterations in soil nutrients and soil microclimates. This study contributes valuable insights into the intricate relationships driving secondary succession in alpine grassland restoration.

Keywords