Crystals (Apr 2022)
Enhancement of Protein Crystallization Using Nano-Sized Metal–Organic Framework
Abstract
Protein crystallization plays a fundamental role in structural biology and chemistry, drug discovery, and crystallography itself. Determining how to improve the crystal growth is necessary and vital during the whole process. According to the recently published data, crystallizing proteins on nanoporous surfaces (i.e., metal–organic framework, abbreviated as MOF) is faster and demands less protein. However, dispersing micro-sized MOF materials uniformly is still a challenge and limiting process in protein crystallization. Here, we investigate the uniformity of micro-sized MOF under the treatment of the high-pressure homogenizer. At various pressures, the MOF is split into particles of different sizes, including the uniform and stable nano-sized MOF. Crystallization experiments demonstrated its enhancement in protein crystallization, and the number of crystals is significantly increased in the presence of nano-sized MOF. This work explores the use of nano-sized MOF solids to crystallize proteins of limited availability (i.e., insufficient for conventional methods) or of a hard-to-crystallize nature.
Keywords