BMC Biotechnology (Nov 2023)

The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa

  • Fanglei Xue,
  • Zhen Zhao,
  • Shuying Gu,
  • Meixin Chen,
  • Jing Xu,
  • Xuegang Luo,
  • Jingen Li,
  • Chaoguang Tian

DOI
https://doi.org/10.1186/s12896-023-00823-4
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Filamentous fungi are efficient degraders of plant biomass and the primary producers of commercial cellulolytic enzymes. While the transcriptional regulation mechanisms of cellulases have been continuously explored in lignocellulolytic fungi, the induction of cellulase production remains a complex multifactorial system, with several aspects still largely elusive. Results In this study, we identified a Zn2Cys6 transcription factor, designated as Clr-5, which regulates the expression of cellulase genes by influencing amino acid metabolism in Neurospora crassa during growth on cellulose. The deletion of clr-5 caused a significant decrease in secreted protein and cellulolytic enzyme activity of N. crassa, which was partially alleviated by supplementing with yeast extract. Transcriptomic profiling revealed downregulation of not only the genes encoding main cellulases but also those related to nitrogen metabolism after disruption of Clr-5 under Avicel condition. Clr-5 played a crucial role in the utilization of multiple amino acids, especially leucine and histidine. When using leucine or histidine as the sole nitrogen source, the Δclr-5 mutant showed significant growth defects on both glucose and Avicel media. Comparative transcriptomic analysis revealed that the transcript levels of most genes encoding carbohydrate-active enzymes and those involved in the catabolism and uptake of histidine, branched-chain amino acids, and aromatic amino acids, were remarkably reduced in strain Δclr-5, compared with the wild-type N. crassa when grown in Avicel medium with leucine or histidine as the sole nitrogen source. These findings underscore the important role of amino acid metabolism in the regulation of cellulase production in N. crassa. Furthermore, the function of Clr-5 in regulating cellulose degradation is conserved among ascomycete fungi. Conclusions These findings regarding the novel transcription factor Clr-5 enhance our comprehension of the regulatory connections between amino acid metabolism and cellulase production, offering fresh prospects for the development of fungal cell factories dedicated to cellulolytic enzyme production in bio-refineries.

Keywords