Mathematics (Dec 2022)

Random Motions at Finite Velocity on Non-Euclidean Spaces

  • Francesco Cybo Ottone,
  • Enzo Orsingher

DOI
https://doi.org/10.3390/math10234609
Journal volume & issue
Vol. 10, no. 23
p. 4609

Abstract

Read online

In this paper, random motions at finite velocity on the Poincaré half-plane and on the unit-radius sphere are studied. The moving particle at each Poisson event chooses a uniformly distributed direction independent of the previous evolution. This implies that the current distance d(P0,Pt) from the starting point P0 is obtained by applying the hyperbolic Carnot formula in the Poincaré half-plane and the spherical Carnot formula in the analysis of the motion on the sphere. We obtain explicit results of the conditional and unconditional mean distance in both cases. Some results for higher-order moments are also presented for a small number of changes of direction.

Keywords