Vestnik KRAUNC: Fiziko-Matematičeskie Nauki (Dec 2020)
Non-commutative phase space Landau problem in the presence of a minimal length
Abstract
The deformed Landau problem under a electromagnetic field is studied, where the Heisenberg algebra is constructed in detail in non-commutative phase space in the presence of a minimal length. We show that, in the presence of a minimal length, the momentum space is more practical to solve any problem of eigenvalues. From the Nikiforov-Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions are expressed in terms of hypergeometric functions. The fortuitous degeneration observed in the spectrum shows that the formulation of the minimal length complements that of the non-commutative phase space.
Keywords