Materials (Nov 2021)

Band Gap of Pb(Fe<sub>0.5</sub>Nb<sub>0.5</sub>)O<sub>3</sub> Thin Films Prepared by Pulsed Laser Deposition

  • Nicole Bartek,
  • Vladimir V. Shvartsman,
  • Houssny Bouyanfif,
  • Alexander Schmitz,
  • Gerd Bacher,
  • Selina Olthof,
  • Svetlana Sirotinskaya,
  • Niels Benson,
  • Doru C. Lupascu

DOI
https://doi.org/10.3390/ma14226841
Journal volume & issue
Vol. 14, no. 22
p. 6841

Abstract

Read online

Ferroelectric materials have gained high interest for photovoltaic applications due to their open-circuit voltage not being limited to the band gap of the material. In the past, different lead-based ferroelectric perovskite thin films such as Pb(Zr,Ti)O3 (Pb,La)(Zr,Ti)O3 and PbTiO3 were investigated with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only absorb photons in the UV spectral range. The well-known ferroelectric PbFe0.5Nb0.5O3 (PFN), which is in a structure similar to the other three, has not been considered as a possible candidate until now. We found that the band gap of PFN is around 2.75 eV and that the conductivity can be increased from 23 S/µm to 35 S/µm during illumination. The relatively low band gap value makes PFN a promising candidate as an absorber material.

Keywords