HortScience (Feb 2024)

Nitrogen Use Efficiency and Yield Levels Using Soluble and Controlled-release Urea Formulations in Tomato Production

  • Laura Jalpa,
  • Rao S. Mylavarapu,
  • George Hochmuth,
  • Yuncong Li,
  • Bala Rathinasabapathi,
  • Edzard van Santen

DOI
https://doi.org/10.21273/HORTSCI17679-23
Journal volume & issue
Vol. 59, no. 4

Abstract

Read online

This research study evaluated the suitability of controlled-release urea (CRU) as an alternate nitrogen (N) fertilizer source to conventional soluble urea (U) for tomato production under a humid, warm climate in coastal plain soils. Tomatoes are typically produced on raised plastic-mulched beds, where U is fertigated through multiple applications. On the other hand, CRU is applied once at planting, incorporated into soil before the raised beds are covered with plastic mulch. N source and management will likely impact tomato yield, N use efficiency (NUE), and apparent recovery of N fertilizer (APR). A 2-year field study was conducted on fall and spring tomato crops in north Florida to determine the crop N requirement and NUE in tomatoes (var. HM 1823) grown in sandy soils under a plastic-mulched bed system. In addition to a no N fertilizer treatment, three urea N sources [one soluble source and two polymer-coated CRU sources with different N release durations of 60 (CRU-60) and 75 (CRU-75) days] were applied at three N rates (140, 168, and 224 kg⋅ha−1). Across all N sources and N rates, fall yields were at least 20% higher than spring seasons. At the 140 kg⋅ha−1 N rate, APR and NUE were improved, especially when U was applied in fall tomato, whereas preplant CRUs improved N efficiency in spring tomato. Based on the lower APR values found in spring production seasons (0% to 16%) when compared with fall (57.1% to 72.6%), it can be concluded that residual soil N was an important source for tomatoes. In addition, the mean whole-plant N accumulation of tomato was 102.5 kg⋅ha−1, further indicating that reducing the N rate closer to crop N demand would greatly improve conventional vegetable production systems on sandy soils in north Florida. In conclusion, polymer-coated CRU and fertigation U applications were able to supply the N requirement of spring and fall tomato at a 38% reduction of the recommended N rate for tomato in Florida (224 kg⋅ha−1). Preliminary results show that adoption of CRU fertilizers can be considered a low-risk alternative N source for tomato production and the ease of applying CRU once during the bed preparation period for tomato may be an additional incentive.

Keywords