Proceedings of the XXth Conference of Open Innovations Association FRUCT (Nov 2018)

VOSYSmonitor, a TrustZone-based Hypervisor for ISO 26262 Mixed-critical System

  • Pierre Lucas,
  • Kevin Chappuis,
  • Benjamin Boutin,
  • Julian Vetter,
  • Daniel Raho

Journal volume & issue
Vol. 602, no. 23
pp. 231 – 238

Abstract

Read online

With the emergence of multicore embedded System on Chip (SoC), the integration of several applications with different levels of criticality on the same platform is becoming increasingly popular. These platforms, known as mixed-criticality systems, need to meet numerous requirements (e.g. real-time constraints, multiple Operating Systems (OS) scheduling, pro- viding temporal and spatial isolation). In this context Virtual Open Systems has developed VOSYSmonitor, a thin software layer, which allows the co-execution of a safety-critical and non- critical applications on a single ARM-based multi-core SoC. This software element has been developed according to the ISO 26262 standard. One of the key aspects of this standard is the control of random and systematic failures, including the ones induced by faulty or aging hardware. In the case of a software component, the means to detect anomalies on the hardware are limited and depend on choices of the manufacturer (i.e. implementation of Dual redundant Core Lock step (DCLS)). However, the software is able to check a part of these failures. It can be by either reading the configuration registers of a peripheral, or checking the sanity of a memory region. The purpose of this paper is to showcase how a safety-related software element (e.g. VOSYSmonitor) can detect and recover from failures, while ensuring that the safety-related goals are still reached.

Keywords