Cellular and Molecular Gastroenterology and Hepatology (Jan 2022)

TOB1 Blocks Intestinal Mucosal Inflammation Through Inducing ID2-Mediated Suppression of Th1/Th17 Cell Immune Responses in IBDSummary

  • Ritian Lin,
  • Caiyun Ma,
  • Leilei Fang,
  • Chunjin Xu,
  • Cui Zhang,
  • Xiaohan Wu,
  • Wei Wu,
  • Ruixin Zhu,
  • Yingzi Cong,
  • Zhanju Liu

Journal volume & issue
Vol. 13, no. 4
pp. 1201 – 1221

Abstract

Read online

Background & Aims: TOB1 is an anti-proliferative protein of Tob/BTG family and typically involved in the tumorigenesis and T cell activation. Although TOB1 is associated with T helper 17 cell–related autoimmunity, its role in modulating T cell–mediated immune responses in IBD remains poorly understood. Here, we explored its expression and the underlying mechanisms involved in the pathogenesis of inflammatory bowel disease (IBD). Methods: TOB1 and ID2 expression in IBD patients was examined by quantitative real time polymerase chain reaction and immunohistochemistry. IBD CD4+ T cells were transfected with lentivirus expressing TOB1, ID2, TOB1 short hairpin RNA and ID2 short hairpin RNA, respectively, and Tob1–/–CD4+ T cells were transfected with lentivirus expressing Id2. Experimental colitis was established in Tob1–/– mice by trinitrobenzene sulfonic acid enema and in Rag1–/– mice reconstituted with Tob1–/–CD45RBhighCD4+ T cells to further explore the role of Tob1 in intestinal mucosal inflammation. Splenic CD4+ T cells of Tob1–/– mice were sorted to determine transcriptome differences by RNA sequencing. Results: TOB1 expression was decreased in inflamed mucosa and peripheral blood CD4+ T cells of IBD patients compared with healthy subjects. Overexpression of TOB1 downregulated IBD CD4+ T cells to differentiate into Th1/Th17 cells compared with control subjects. Severe colitis was observed in Tob1–/– mice through trinitrobenzene sulfonic acid enema or in Rag1–/– mice reconstituted with Tob1–/–CD45RBhighCD4+ T cells, compared with control animals. RNA sequencing analysis revealed ID2 as functional target of TOB1 to inhibit IBD CD4+ T cell differentiation into Th1/Th17 cells. Mechanistically, TOB1 was associated with Smad4/5 to induce ID2 expression and restrain Th1/Th17 cell differentiation. Conclusions: TOB1 restrains intestinal mucosal inflammation through suppressing Th1/Th17 cell–mediated immune responses via the Smad4/5-ID2 pathway. It may serve as a novel therapeutic target for treatment of human IBD.

Keywords