Sensors (Aug 2022)

Single Camera Face Position-Invariant Driver’s Gaze Zone Classifier Based on Frame-Sequence Recognition Using 3D Convolutional Neural Networks

  • Catherine Lollett,
  • Mitsuhiro Kamezaki,
  • Shigeki Sugano

DOI
https://doi.org/10.3390/s22155857
Journal volume & issue
Vol. 22, no. 15
p. 5857

Abstract

Read online

Estimating the driver’s gaze in a natural real-world setting can be problematic for different challenging scenario conditions. For example, faces will undergo facial occlusions, illumination, or various face positions while driving. In this effort, we aim to reduce misclassifications in driving situations when the driver has different face distances regarding the camera. Three-dimensional Convolutional Neural Networks (CNN) models can make a spatio-temporal driver’s representation that extracts features encoded in multiple adjacent frames that can describe motions. This characteristic may help ease the deficiencies of a per-frame recognition system due to the lack of context information. For example, the front, navigator, right window, left window, back mirror, and speed meter are part of the known common areas to be checked by drivers. Based on this, we implement and evaluate a model that is able to detect the head direction toward these regions having various distances from the camera. In our evaluation, the 2D CNN model had a mean average recall of 74.96% across the three models, whereas the 3D CNN model had a mean average recall of 87.02%. This result show that our proposed 3D CNN-based approach outperforms a 2D CNN per-frame recognition approach in driving situations when the driver’s face has different distances from the camera.

Keywords