Intensive Care Medicine Experimental (Sep 2019)

Respiratory and metabolic acidosis correction with the ADVanced Organ Support system

  • Aritz Perez Ruiz de Garibay,
  • John A. Kellum,
  • Johannes Honigschnabel,
  • Bernhard Kreymann

DOI
https://doi.org/10.1186/s40635-019-0269-7
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background The lung, the kidney, and the liver are major regulators of acid-base balance. Acidosis due to the dysfunction of one or more organs can increase mortality, especially in critically ill patients. Supporting compensation by increasing ventilation or infusing bicarbonate is often ineffective. Therefore, direct removal of acid may represent a novel therapeutic approach. This can be achieved with the ADVanced Organ Support (ADVOS) system, an enhanced renal support therapy based on albumin dialysis. Here, we demonstrate proof of concept for this technology. Methods An ex vivo model of either hypercapnic (i.e., continuous CO2 supply) or lactic acidosis (i.e., lactic acid infusion) using porcine blood was subjected to hemodialysis with ADVOS. A variety of operational parameters including blood and dialysate flows, different dialysate pH settings, and acid and base concentrate compositions were tested. Comparisons with standard continuous veno-venous hemofiltration (CVVH) using high bicarbonate substitution fluid and continuous veno-venous hemodialysis (CVVHD) were also performed. Results Sixty-one milliliters per minute (2.7 mmol/min) of CO2 was removed using a blood flow of 400 ml/min and a dialysate pH of 10 without altering blood pCO2 and HCO3 − (36 mmHg and 20 mmol/l, respectively). Up to 142 ml/min (6.3 mmol/min) of CO2 was eliminated if elevated pCO2 (117 mmHg) and HCO3 − (63 mmol/l) were allowed. During continuous lactic acid infusion, an acid load of up to 3 mmol/min was compensated. When acidosis was triggered, ADVOS multi normalized pH and bicarbonate levels within 1 h, while neither CVVH nor CVVHD could. The major determinants to correct blood pH were blood flow, dialysate composition, and initial acid-base status. Conclusions In conclusion, ADVOS was able to remove more than 50% of the amount of CO2 typically produced by an adult human. Blood pH was maintained stable within the physiological range through compensation of a metabolic acid load by albumin dialysate. These in vitro results will require confirmation in patients.

Keywords