Biogeosciences (Jun 2021)

A triple tree-ring constraint for tree growth and physiology in a global land surface model

  • J. Barichivich,
  • J. Barichivich,
  • P. Peylin,
  • T. Launois,
  • V. Daux,
  • C. Risi,
  • J. Jeong,
  • S. Luyssaert

DOI
https://doi.org/10.5194/bg-18-3781-2021
Journal volume & issue
Vol. 18
pp. 3781 – 3803

Abstract

Read online

Annually resolved tree-ring records extending back to pre-industrial conditions have the potential to constrain the responses of global land surface models at interannual to centennial timescales. Here, we demonstrate a framework to simultaneously constrain the representation of tree growth and physiology in the ORCHIDEE global land surface model using the simulated variability of tree-ring width and carbon (Δ13C) and oxygen (δ18O) stable isotopes in six sites in boreal and temperate Europe. We exploit the resulting tree-ring triplet to derive integrative constraints for leaf physiology and growth from well-known mechanistic relationships among the variables. ORCHIDEE simulates Δ13C (r=0.31–0.80) and δ18O (r=0.36–0.74) better than tree-ring width (r<0.55), with an overall skill similar to that of a tree-ring model (MAIDENiso) and another isotope-enabled global vegetation model (LPX-Bern). The comparison with tree-ring data showed that growth variability is not well represented in ORCHIDEE and that the parameterization of leaf-level physiological responses (stomatal control) to drought stress in the temperate region can be constrained using the interannual variability of tree-ring stable isotopes. The representation of carbon storage and remobilization dynamics emerged as a critical process to improve the realism of simulated growth variability, temporal carryover, and recovery of forest ecosystems after climate extremes. Simulated forest gross primary productivity (GPP) correlates with simulated tree-ring Δ13C and δ18O variability, but the origin of the correlations with tree-ring δ18O is not entirely physiological. The integration of tree-ring data and land surface models as demonstrated here should guide model improvements and contribute towards reducing current uncertainties in forest carbon and water cycling.