Frontiers in Physiology (Aug 2024)
Wavelet-based U-shape network for bioabsorbable vascular stents segmentation in IVOCT images
Abstract
Background and ObjectiveCoronary artery disease remains a leading cause of mortality among individuals with cardiovascular conditions. The therapeutic use of bioresorbable vascular scaffolds (BVSs) through stent implantation is common, yet the effectiveness of current BVS segmentation techniques from Intravascular Optical Coherence Tomography (IVOCT) images is inadequate.MethodsThis paper introduces an enhanced segmentation approach using a novel Wavelet-based U-shape network to address these challenges. We developed a Wavelet-based U-shape network that incorporates an Attention Gate (AG) and an Atrous Multi-scale Field Module (AMFM), designed to enhance the segmentation accuracy by improving the differentiation between the stent struts and the surrounding tissue. A unique wavelet fusion module mitigates the semantic gaps between different feature map branches, facilitating more effective feature integration.ResultsExtensive experiments demonstrate that our model surpasses existing techniques in key metrics such as Dice coefficient, accuracy, sensitivity, and Intersection over Union (IoU), achieving scores of 85.10%, 99.77%, 86.93%, and 73.81%, respectively. The integration of AG, AMFM, and the fusion module played a crucial role in achieving these outcomes, indicating a significant enhancement in capturing detailed contextual information.ConclusionThe introduction of the Wavelet-based U-shape network marks a substantial improvement in the segmentation of BVSs in IVOCT images, suggesting potential benefits for clinical practices in coronary artery disease treatment. This approach may also be applicable to other intricate medical imaging segmentation tasks, indicating a broad scope for future research.
Keywords