NeuroImage: Clinical (Jan 2017)
Comparison of [18F]Flutemetamol and [11C]Pittsburgh Compound-B in cognitively normal young, cognitively normal elderly, and Alzheimer's disease dementia individuals
Abstract
Background: Understanding the variation in uptake between different amyloid PET tracers is important to appropriately interpret data using different amyloid tracers. Therefore, we compared the uptake differences in [18F]Flutemetamol (FMT) and [11C]PiB (PiB) PET in the same people. Methods: Structural MRI, FMT PET and PiB PET were each performed in 30 young cognitively normal (yCN), 31 elderly cognitively normal (eCN) and 21 Alzheimer's disease dementia (AD) participants. PiB and FMT images for each participant were compared quantitatively using voxel- and region-based analyses. Region of interest (ROI) analyses included comparisons of grey matter (GM) regions as well as white matter (WM) regions. Regional comparisons of each tracer between different groups and comparisons of the two modalities within the different groups were performed. To compare mean SUVr between modalities, and between diagnostic groups, we used paired t-tests and Student's t-test, respectively. We also compared the ability of the two tracers to discriminate between diagnostic groups using AUROC estimates. The effect of using different normalization regions on SUVr values was also evaluated. Results: Both FMT and PiB showed greater uptake throughout GM structures in AD vs. eCN or yCN. In all dual-modality group comparisons (FMT vs. PiB in yCN, eCN, and AD), greater WM uptake was seen with FMT vs. PiB. In yCN and eCN greater diffuse GM uptake was seen with FMT vs. PiB. When comparing yCN to eCN within each tracer, greater WM uptake was seen in eCN vs yCN. Conclusions: Flutemetamol and PiB show similar topographical GM uptake in AD and CN participants and the tracers show comparable group discrimination. Greater WM accumulation with FMT suggests that quantitative differences vs. PiB will be apparent when using WM or GM as a reference region. Both imaging tracers demonstrate increased WM uptake in older people. These findings suggest that using different amyloid tracers or different methods of analyses in serial brain imaging in an individual may result in artifactual amyloid change measurements. Clinical use of several amyloid tracers in the same patient will have challenges that need to be carefully considered.