Crystals (Jun 2020)
DFT Investigation on the Electronic, Magnetic, Mechanical Properties and Strain Effects of the Quaternary Compound Cu<sub>2</sub>FeSnS<sub>4</sub>
Abstract
The electronic, magnetic and mechanical properties of the quaternary compound Cu2FeSnS4 have been investigated with first principle calculations. Its half-metallicity has been identified with spin polarized band structures and its magnetic origination is caused by the strong spin splitting effect in the d orbitals of Fe atoms. The total magnetic moment of 4 μB is mainly contributed by the Fe atoms and the spatial distribution of the magnetic spin density and charge density difference have also been examined. Moreover, several mechanical properties of Cu2FeSnS4 have been derived and its mechanical stability is also verified. The directional dependent Young’s modulus exhibits relatively small anisotropy yet the shear modulus shows strong directional anisotropy. At last, the tetragonal strain effects have been evaluated and their impact on the electronic and magnetic properties are provided. Results show the total magnetic moment stays almost unchanged while the half-metallicity can only be maintained under relatively small variations for both strains. This study can provide comprehensive information about the various properties of Cu2FeSnS4 compound and serve as a helpful reference for its future applications.
Keywords