Frontiers in Energy Research (Apr 2024)
A data-driven ensemble technique for the detection of false data injection attacks in the smart grid framework
Abstract
The major component of the smart grid (SG) is the advanced metering infrastructure (AMI), which monitors and controls the existing power system and provides interactive services for invoicing and electricity usage management with the utility. Including a cyber-layer in the metering system allows two-way communication but creates a new opportunity for energy theft, resulting in significant monetary loss. This article proposes an approach to detecting abnormal consumption patterns using energy metering data based on the ensemble technique AdaBoost, a boosting algorithm. Different statistical and descriptive features are retrieved from metering data samples, which account for extreme conditions. The model is trained for malicious and non-malicious data for five different attack scenarios, which are analyzed on the Irish Social Science Data Archive (ISSDA) smart meter dataset. In contrast to prior supervised techniques, it works well even with unbalanced data. The efficacy of the proposed theft detection method has been evaluated by comparing the accuracy, precision, recall, and F1 score with the other well-known approaches in the literature.
Keywords