Micromachines (Jan 2023)
Robot-Aided Magnetic Navigation System for Wireless Capsule Manipulation
Abstract
Magnetic navigation systems (MNSs) have been developed to use in the diagnosis of gastrointestinal problems. However, most conventional magnetic navigation systems are expensive and have structural problems because of their large weights and volumes. Therefore, this paper proposes C-Mag, a novel compact MNS composed of two electromagnets and a robotic arm. The two electromagnets generate a planar magnetic field, and the robotic arm rotates and translates the electromagnets to manipulate the magnetic capsule in a large 3-dimensional (3-D) space. The C-Mag design considers the payload of the robotic arm and the capacity of the power supply unit. Under these limited conditions, the C-Mag was optimized to generate the maximum magnetic field considering several major factors. Finally, the C-Mag was constructed, and the maximum magnetic field that could be generated in one direction was 18.65 mT in the downward direction. Additionally, the maximum rotating magnetic field was 13.21 mT, which was used to manipulate the capsule. The performance was verified by measuring the generated magnetic field, and it matched well with the simulated result. Additionally, the path-following experiment of the magnetic capsule showed that the proposed C-Mag can effectively manipulate the magnetic capsule in 3-D space using the robotic arm. This study is expected to contribute to the further development of magnetic navigation systems to treat gastrointestinal problems.
Keywords